Effects of solid-to-solution ratio on uranium(VI) adsorption and its implications.

نویسندگان

  • Tao Cheng
  • Mark O Barnett
  • Eric E Roden
  • Jinling Zhuang
چکیده

U(VI) adsorption onto goethite-coated sand was studied in batch experiments ata solid-to-solution ratio (SSR) ranging from 33.3 to 333 g/L. Batch kinetic experiments revealed that the presence of 10(-4) M phosphate increased both the initial rate and ultimate extent of U(VI) adsorption compared with phosphate-free systems. Our experimental U(VI) adsorption isotherms were independent of SSR in phosphate-free systems. However, the U(VI) adsorption isotherm became dependent on SSR in phosphate-containing systems (with a lower SSR resulting in stronger U(VI) adsorption). A surface complexation model (SCM) was used to conceptualize the interactions in systems containing U(VI), phosphate, and goethite contributing to this SSR effect. The SCM accounted for the effects of SSR on U(VI) adsorption reasonably well. This study implies that the extrapolation of batch-measured adsorption parameters of U(VI) (and potentially other radionuclides and metal(loid)s as well) to field conditions should be done with caution, especially in the presence of strongly interacting ligands.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

حذف اورانیم (VI) از محلول‌های آبی با ایجاد کمپلکس اورانیم بنزامید با استفاده از نانوکامپوزیت AC_Fe3O4

Background and Objectives: Increased growing nuclear industry has increased the researchers concerns on uranium presence in the environment and its effects on human health. Uranium is a dangerous radioactive heavy metal with high half-life and chemical toxicity. Therefore, the main objective of this study was to removal uranium (VI) from aqueous solution by uranium benzamide complex using AC_Fe...

متن کامل

Biosorption of Uranium (VI) from Aqueous Solution by Pretreated Aspergillus niger Using Sodium Hydroxide

The removal of uranium and any other heavy metals from wastewater might be achieved via several chemical or physical treatment techniques. Biosorption process has been considered as a potential alternative way to remove contaminants from industrial effluents. Moreover the surface of biosorbent was characterized by SEM. The biosorption characteristics of uranium (VI) on pretreated A...

متن کامل

Optimization of solvothermally synthesized ZIF-67 metal organic framework and its application for Cr(VI) adsorption from aqueous solution

In this study, ZIF-67 was synthesized through solvothermal method to remove Cr(VI) ions from aqueous solution. To improve the structural properties of ZIF-67 and its adsorption capacity, optimization of the synthesis conditions was carried out based on maximum Cr(VI) uptake. From experiments, the optimum condition was revealed as solvent: metal ion molar ratio of 4.6:1, ligand: metal ion molar ...

متن کامل

Removal of uranium (U(VI)) ions using NiO NPs/Ag-clinoptilolite zeolite composite adsorbent from drinking water: equilibrium, kinetic and thermodynamic studies

The present research describes the performance of NiO NPs/Ag-clinoptilolite composite adsorbent for the removal of uranium (U(VI)) ions from drinking water of Dezful city-Iran. Prior to the experiment reactions, Na-clinoptilolite was chemically treated with NaCl, Silver ions (Ag+) and subsequently Nickel (NiO) NPs to prepare NiO NPs/Ag-clinoptilolite. The samples were characterized by SEM, AAS,...

متن کامل

Evaluating Commercial Macroporous Resin (D201) for Uranium Uptake in Static and Dynamic Fixed Bed Ion Exchange Column

As part of the development of equipment and innovative technology for the process flow-sheet, a study on the selection of good resin for uranium uptake is ongoing. Both static and dynamic column equilibrium testing upon synthetic and Gattar pregnant leach solutions (PLS) were carried out to estimate the change of total capacity and breakthrough capacity of the commercial macroporous anion excha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 40 10  شماره 

صفحات  -

تاریخ انتشار 2006